Conditional random slope: A new approach for estimating individual child growth velocity in epidemiological research

نویسندگان

  • Michael Leung
  • Diego G. Bassani
  • Amy Racine‐Poon
  • Anna Goldenberg
  • Syed Asad Ali
  • Gagandeep Kang
  • Prasanna S. Premkumar
  • Daniel E. Roth
چکیده

OBJECTIVES Conditioning child growth measures on baseline accounts for regression to the mean (RTM). Here, we present the "conditional random slope" (CRS) model, based on a linear-mixed effects model that incorporates a baseline-time interaction term that can accommodate multiple data points for a child while also directly accounting for RTM. METHODS In two birth cohorts, we applied five approaches to estimate child growth velocities from 0 to 12 months to assess the effect of increasing data density (number of measures per child) on the magnitude of RTM of unconditional estimates, and the correlation and concordance between the CRS and four alternative metrics. Further, we demonstrated the differential effect of the choice of velocity metric on the magnitude of the association between infant growth and stunting at 2 years. RESULTS RTM was minimally attenuated by increasing data density for unconditional growth modeling approaches. CRS and classical conditional models gave nearly identical estimates with two measures per child. Compared to the CRS estimates, unconditional metrics had moderate correlation (r = 0.65-0.91), but poor agreement in the classification of infants with relatively slow growth (kappa = 0.38-0.78). Estimates of the velocity-stunting association were the same for CRS and classical conditional models but differed substantially between conditional versus unconditional metrics. CONCLUSION The CRS can leverage the flexibility of linear mixed models while addressing RTM in longitudinal analyses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating correlation between multivariate longitudinal data in the presence of heterogeneity

BACKGROUND Estimating correlation coefficients among outcomes is one of the most important analytical tasks in epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard to assessing correlation. However, BLMMs often ...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

Epidemiological Distributions and Critical Contributions to the Growth Rate for Infants and Young Children in Hubei Province of China during 2017 to 2018: A Review

The growth rate for infants and young children manifests the significant differences between age, sex, regional, and seasonal distributions. The growth rate for infants and young children is a complex process that depends on interaction of the genetic and environmental factors. All genetic and environmental factors jointly contribute to the growth rate for infants and young children, for exampl...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Combination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks

This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2017